Cohomological dimension and relative Cohen-Maculayness

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cohomological Dimension of Markov Compacta

We rephrase Gromov’s definition of Markov compacta, introduce a subclass of Markov compacta defined by one building block and study cohomological dimensions of these compacta. We show that for a Markov compactum X, dimZ(p) X = dimQ X for all but finitely many primes p where Z(p) is the localization of Z at p. We construct Markov compacta of arbitrarily large dimension having dimQ X = 1 as well ...

متن کامل

Cohomological Approach to Asymptotic Dimension

We introduce the notion of asymptotic cohomology based on the bounded cohomology and define cohomological asymptotic dimension asdimZ X of metric spaces. We show that it agrees with the asymptotic dimension asdimX when the later is finite. Then we use this fact to construct an example of a metric space X of bounded geometry with finite asymptotic dimension for which asdim(X × R) = asdimX. In pa...

متن کامل

On the left and right cohomological dimension

In this paper we construct, for any 1 m; n 1, a nitely presented monoid with left cohomological dimension m and right cohomological dimension n.

متن کامل

Cohomological Dimension, Connectedness Properties and Initial Ideals

In this paper we will compare the connectivity dimension c(P/I) of an ideal I in a polynomial ring P with that of any initial ideal of I. Generalizing a theorem of Kalkbrener and Sturmfels [18], we prove that c(P/LT≺(I)) ≥ min{c(P/I), dim(P/I)−1} for each monomial order ≺. As a corollary we have that every initial complex of a Cohen-Macaulay ideal is strongly connected. Our approach is based on...

متن کامل

Gröbner Deformations, Connectedness and Cohomological Dimension

In this paper we will compare the connectivity dimension c(P/I) of an ideal I in a polynomial ring P with that of any initial ideal of I. Generalizing a theorem of Kalkbrener and Sturmfels [18], we prove that c(P/LT≺(I)) ≥ min{c(P/I), dim(P/I)−1} for each monomial order ≺. As a corollary we have that every initial complex of a Cohen-Macaulay ideal is strongly connected. Our approach is based on...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications in Algebra

سال: 2019

ISSN: 0092-7872,1532-4125

DOI: 10.1080/00927872.2019.1623242